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INTRODUCTION 

Neural networks - a general description 

NNs have been so-named because they mimic, in some respects, the structure and function of 
neurons in the brain. A NN consists of layers of nodes (analogous to neurons) linked by inter- 
connections (axons/dendrites), together with rules that specify how the output of each node is 
determined by input values from all nodes at the level below. A layered architecture of neurons 
in the brain can be used to provide progressively more abstract representation of input stimuli as 
the information is filtered through successive layers; NNs attempt to reproduce this effect, 
although most networks are limited in practice to three or four layers in total. 

Output node(s) 

Input nodes 

The lowest level of nodes in a NN is used to represent the input values, and the node or nodes in 
the highest level provide output from the NN. Since each node receives input from all nodes at 
the level below, generally combined as a weighted sum, the number of interconnections (and thus 
the number of weights) can be very large. Determining values for these weights a priori in order 
to obtained desired outputs for given inputs is clearly impractical for all but the most trivial 
networks. Useful NNs are made possible by the application of a learning algorithm that iteratively 
modifies the weights to minimize an "error function". The error function summarizes the 
differences between the actual output of the NN and the desired (or "true") output (Rumelhart, 
1986). 

The role of prognostic grouping and outcome prediction in clinical medicine 

Establishing the prognosis for a patient may assist that patient in making choices about treatment 
and/or lifestyle changes. For breast cancer, determining the prognosis of a patient has become 
an essential first step to determining treatment: patients with a poor prognosis (at high risk of 
relapse or recurrence and/or with substantial residual disease) will generally be placed on the most 
intensive treatments while those with a good prognosis may be spared the acute toxicity and risks 



of long term effects associated with aggressive treatment. 

The traditional methods used to identify prognostic variables are logistic regression for categorical 
outcomes, such as death/non-response/remission, or Cox regression (Cox, 1972) for survival-type 
outcomes. These multivariate methods generally combine the explanatory variables in a single 
linear expression; more complex relationships between the explanatory and outcome variables can 
be modelled using stratification and interaction terms but incorporation of such terms tend to be 
limited. However, a complex "prognostic syndrome" that involves several variables in a non- 
linear fashion would almost certainly escape attention in a traditional Cox regression analysis. 

In recent years, the largely clinical data that have been used to separate prognostic groups have 
come to be supplemented to an increasing degree by laboratory data. New analytic methods can 
provide information on such things as specific mutations, gene amplification, gross chromosomal 
abnormalities such as translocations, deletions, ploidy changes etc., presence or absence or cell 
surface markers including antigens and receptor proteins, and immunological parameters. Not 
unexpectedly, many of these biological characteristics correlate with outcome, but all too 
commonly new factors are reported without analysis of the extent to which they provide 
independent prognostic information, nor any guidance as to their use in conjunction with other 
factors in clinical decision making. 

Use of neural networks to predict time to relapse in breast cancer 

NNs have been used successfully to predict categorical clinical outcomes but there is no 
established method for dealing with potentially censored output values. 

Ravdin et al (1992) published the first report of the use of NNs for clinical prediction with a 
survival-type outcome. This analysis attempted to relate six prognostic factors (tumor hormone 
status, DNA index, S-phase determination, tumor size, number of axillary nodes involved, and 
patient age) to time to relapse for women with node-positive breast cancer. A rather complex ad 
hoc method was used to adapt conventional NN programs to handle the censored data: (1) Selected 
input variables were log transformed, and normalized to lie within -1 to 1, (2) The database was 
split into a training set, evaluation set and validation set, (3) Time intervals (from the Kaplan- 
Meier curve) that corresponded to estimated rates of 0.90, 0.80, ... 0.10 were determined, (3) 
Each patient-record was split into Hi; patient-time records (for patient i), where the time from study 
entry to time of analysis (the maximum follow-up) was Ts years and mt of the time intervals come 
before Ti; (4) The NN was constructed with one output node (dead/alive) and a time variable (1, 
2, up to Tj) as an input value. Patients that died before Tj were represented as dead in all patient- 
time records for intervals after their time of death, (5) To correct for bias due to non-uniform 
follow-up, the number of patient-time records corresponding to each interval was adjusted (by 
random elimination of records) to ensure that the ratio of records with "alive" status to those with 
"dead" status matched the observed Kaplan-Meier rates for the study group, (6) The output 
prediction was interpreted as a measure of relapse risk, and used to create risk subsets, (7) NN 
and Cox regression were compared in their ability to define groups with different Kaplan-Meier 
disease-free curves in an independent validation dataset, (8). 



This approach was effective in defining prognostic groups: generally, the NN defined high and 
low risk subsets as efficiently as Cox regression and in some respects performed better. For 
instance, although having ten or more positive nodes was identified as a poor prognostic factor 
(32% relapse rate at 3 years), the NN placed only 54% of such patients in the high risk fertile; 
40% were in the mid tertile and 6% were assigned to the lowest tertile. When the actual outcomes 
of the women with 10+ nodes were compared to all other women, within each predicted-risk 
tertile, relapse rates were very similar, indicating that the NN had correctly identified subgroups 
of apparent high risk (according to conventional methods) that belonged in lower risk groups. 

Aims of this project 

The aims of this project were: 

1. To develop a program designed to apply neural network methods to the analysis of clinical 
data.  Development will involve two stages: 

a. Software development of a neural network (NN) program, based on established methods. 
b. Extension of the NN program to handle censored data. 

2. To integrate this program with existing software, in order to: 

a. Provide the neural network program access to a wide range of database management/data 
transformation functions. 

b. Provide a single package that will perform traditional analyses of clinical data (e.g. Cox 
regression) and neural network modelling. 

3. To evaluate alternative methods for identification of prognostic factors. The methods included 
Cox regression (including recursive partitioning), censored linear regression, and four 
different neural network methods. 

BODY 

1. Development of a general NN program 

The neural network program has been developed as a procedure (PROC NEURAL) within the 
statistical package Epilog Plus, in order to benefit from the broad range of data management 
features of this program and to facilitate comaprisons with more conventional methods. PROC 
NEURAL has been developed to have the following basic features (not specifically related to 
analysis of survival-type data): 

Basic structure: Feed-forward neural network, with up to four layers, up to 50 input nodes and 
50 output nodes. Logistic transfer function. Dynamic changes to network structure through 
switching on or off of nodes. 

Training: Back-propagation of errors (calculated as sum of square of prediction error). Logicon 



Projection offered as an option for weight initialization (see below). Weight updating following 
each record, or batched (e.g. after each 'run' through the training dataset). User-specifiable 
learning coefficient and momentum term, with the option to change these learning parameters after 
a preset number of runs - repeated such adjustments are allowed. 

Epilog commands: Initial set-up determined by Epilog-style commands. Training pauses after a 
preset number of runs, or when the user 'breaks'. At this point, the commands can be modified, 
using the Epilog Plus command editor - if the changes do not alter the network structure, training 
continues from the previous point, otherwise the weights are re-initialized. 

Weight analysis. In addition to the weight histogram, which gives an overall indication of weight 
sizes, the user can examine individual weights. By clicking on a node, the values of all 
interconnections into and out of that node can be shown. Combined with a scatterplot that shows 
the relationship between a nodes output and the networks output(s), this information can be used 
to investigate the contribution of a given node to overall performance. 

Weight matrix - Save and recall. The network periodically writes the weights to a disk file. This 
can be at set intervals (number of runs), or when the RMS error on the test dataset begins to 
increase (suggesting that the network is beginning to overfit the training dataset). The weights can 
also be written to a disk file by selecting a menu choice. The weights can subsequently be read 
back, to pick up training or other activities involving the network from any point at which a weight 
'dump' occurred. 

Node enable/disable. The structure of a network can be readily altered (without complete 
respecification) by toggling a node on or off. When off, the network functions as if the node was 
not present. Nodes may be switched on or off at the command line, or interactively, through a 
menu choice. 

Model predictions. A single key-stroke requests that the network's predicted outputs be written 
into the database. These predictions are then available to all other Epilog procedures, for example 
to determine means, medians, distributions, and to graphically display using PROC GRAPH. 

Learning parameters. Several key learning parameters can be set at the start of a training session. 
Often the best values for these parameters early in training can be different from those needed 
later, when the network is getting close to a (local) minimum. To accommodate this, the user may 
pre-specify time points (in terms of run number) at which the parameter values should change. 
Alternatively, the user may make changes interactively, during a training session. 

At any time the test and training dataset can be interchanged. This allows the user to examine 
network function with respect to test data as well as training data. 

2. Windows 95 (32-bit) implementation 

For applications such as neural networks which are very computationally intensive, and which can 
consume large amounts of memory to store the extensive weight matrix, the advantages of 32-bit 



are obvious. Furthermore, the newest FORTRAN standard (FORTRAN 90) includes extensions 
to permit dynamic allocation of memory, which is also highly desirable for this application. For 
these reasons, the neural networks program was converted to Windows 95, using the zApp 
application framework as an intermediary API. 

Fig 2 shows the Windows 95 display for a neural network training run. 
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Figure 2. The training display of PROC NEURAL 

The upper panels show (1) the name of the current Epilog command file, (2) the neural 
network menu choices, and (3) an information panel that shows the run number, the root 
mean square (RMS) prediction error (for both the training dataset and a test dataset if it is 
available) and the proportion of records for which the output prediction is classified as 
'good' (within a specfied tolerance of the true value).. 

Below this are Plots that show (1) RMS error by run number (for training and test data 
separately) and percent of predictions that are within a user-specified tolerance value of the 
true value (also for training and test datasets), by run number;(2) a scatter plot of 
predicted vs. actual value for a specified output node; (3) a table of predicted vs. actual, 



based on the scatterplot and user-specified outpoints;and (4) a histogram of the NN 
weights, which is useful for monitoring training progress. 

The scatterplot will normally show the relationship between the predicted output for a 
node and the true value. When there is more than one node, any one of them can be 
selected for the scatterplot display by clicking on the node. As an alternative, the 
scatterplot can show the input or output of any node vs. the input or output of any other 
node or, for the top level (output) nodes, the true value. This provides avaluable tool for 
exploring network function. 

The scatterplot can be replaced by a number of alternatives, depending on the type of data 
being modeled. One option is a residual plot, that shows a histogram of residual values 
(true-predicted) for a given output node. This distribution should become progrssively 
narrower as the network performance improves. 

Another plot is the Kaplan-Meier curve, which is analogous to the residual plot - it 
displays in a Kaplan-Meier type survival curve the plot of residual survival times (true- 
predicted).  This plot is intended for survival-type outputs. 

The last type of plot is an ROC curve, intended for binary outcomes. The predicted value 
is continuous, and depending on where this value is cut, the prediction will have a range 
of values of sensitivity and specificity. The ROC curve is a widely used means of 
graphically displaying the relationship of sensitivity vs. specificity, and the area under the 
ROC curve is a measure of the performance of the predictor. When this plot is selected, 
the area is also calculated and shown. 

A schematic of the network. Each node is shown, and for a selected training record, the 
values (and variable names) for each input and output node (for this record) are shown. 
The magnitude of the output from each node is indicated by a 'thermometer' that fills from 
0% to 100% of the node interior. The record selected to be shown in this way can be 
fixed, or may change every time the display is refreshed. The display can be refreshed 
after every n runs (user specifiable). Selected interconnections between nodes are shown: 
only those with a weight (or optionally, a weight times node value) that exceed a threshold 
are shown, with negative and positive connections distinguished by color. 

3. Extensions to the NN program to handle censored data 

Undefined node method. 

The simplest approach is to represent the outcome as a series of indicator variables corresponding 
to periods of follow-up. The interval in which a death occurred is represented by a 1, and all 
other intervals (output nodes) take value 0. 



H 0 

Death in Interval 3 

Intervals after a censoring event are considered to have an undefined value. In practice this means 
that this node does not contribute to the prediction error - essentially, it has no influence in the 
error that is used (through back-propagation) to adjust the weights. This method represents a 
relatively straight-forward modification to a 'standard' NN. 

H H □ Censored in Interval 3 

This node does not 
contibute to the error 

Buckley-James method. 

In Buckley-James (expected value) method, NN predictions are compared to the actual values on 
each run and the differences (residuals) used to calculate a Kaplan-Meier-type curve. Based on 
the residual distribution (as reflected in the Kaplan-Meier curve) it is possible to estimate the 
expected survival for any person who was censored. The Buckley-James approach, as it was 
described for linear regression (Buckley and James, 1979) and as it is generalized to the NN 
setting, is to determine the expected survival for all censored individuals (based on the current 
weight matrix), and to substitute the expected value for the censored value when determining and 



back-propagating the error. 

Censored observatiojws replaced 
by its expected^value, given the 

currept'fegression line 

Covariate 

Modified error function. 

An alternative is to modify the error function.  For uncensored observations, the error function 
remains quadratic: 

(Predicted-Actual) 

However, for censored observations the error to be the square of the difference been actual and 
predicted values, except when the prediction exceeds a censored actual value, when the error is 
set to zero. 



(Predicted-Actual) 

Method of Ravdin 

This method does not require any specific programming, since it was developed to use existing 
NN software. However, the incorporation of our NN software within a more general purpose 
software package will make the Ravdin method much simpler to apply. 

Liestol et al 

This is a very promising method that creates a NN that has the property of being identical to Cox 
regression, when certain constraints are imposed. By choosing the appropriate error function and 
transfer function, and stipulating that certain weights be identical in value, it can be shown that 
the NN is the same as Cox regression. Clearly this is not very useful in itself, since there are 
better ways to implement Cox regression that through a NN, but the advantage is that the 
constraints can be selectively relaxed to produce a model that shares some properties with Cox 
regression, but also takes advantage of the power and flexibilty that is inherent in most NN 
models. 

Farragi and Simon 

Another generalization of Cox method has been proposed by Faraggi and Simon. They replace 
the usual linear function of covariates, in the Cox model: 

X(tjc)=X(f). 
,(ß-*,) 

IL. ,(ß-*,) 

with a NN model (that is, a non-linear function, f(x)): 



n „(Ax,)) 
R 

The numerical method for parameter (weight) estimation suggested by them is Newton-Raphson, 
although any of the estimation methods can be used. 

4. Other additions relevant to this project 

PROC COX and PROC CENREG 

As part of the strategy of providing a powerful suite of routines, in one package, that could be 
used for clinical prediction using censored data, we have modified PROC COX (Cox regression) 
and PROC CENREG (censored linear regression) to generate predictions on a case-by-case basis 
and to write these back into the database. 

PROC TREE 

Recursive partitioning is an iterative process that repeatedly subdivides the dataset in order to 
achieve maximum separation of the subgroups.  The steps are as follows: 

(1) At each partitioning stage, the variable that provides the 'best' division of an existing 
partition is used to create a new partition. The criterion for deciding on the best 
division may be based on ratios of observed to expected events, on degree of separation 
of the survival curves, or on the logrank statistic (p-value). For continuous variables, 
finding the best separation involves examination of all possible cutpoints. For nominal 
variables, finding the best separation involves comparisons of all possible combinations 
of categories. 

(2) Partitioning ceases when the criterion (for the best division) does not exceed a 
prespecified threshold value. 

(3) Once partitioning is complete, the program can examine all pairwise combinations of 
partitions to determine if any are sufficiently similar (based on O/E, separation or 
logrank statistic) to combine. After any two partitions are combined, all pairs are 
again examined, until no further combinations are possible. 

5. Evaluation of performance 

As an inevitable consequence of developing alternative NN methods for handling censored data, 
and comparison of them with conventional approaches, we have given a good deal of thought to 
methods for evaluation and comparison. Simple scatterplots of observed and predicted (and 
correlation coefficients) are not useful, since the 'true' event time is not known for censored 
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individuals. Alternatives that have been used by others, and/or have been considered by us are: 

Group comparison. 

The most straight-forward approach, and one that is widely used, is to define prognostic groups 
based on the predicted value, and to examine the Kaplan-Meier curves for each group. The better 
method would generally be expected to give greater separation of the curves (based on 
observed/expected ratios) and higher chi-square test statistics for trend across categories. 
However, this method does not provide a direct test for the superiority of one method over 
another. 

Cox goodness of fit. 

A very useful approach is to fit a Cox model to the covariates of interest, and treat this as a 
baseline for comparison to other models which include predictors derived from alternative 
methods. The advantage of this is that a NN prediction, say, when treated as if it were just 
another covariate may be shown to significantly improve the model fit when compared to a simple 
(no interaction terms) Cox model; an example of this can be seen below. The disadvantage is that 
it evaluates the NN prediction within the context of a proportional hazards model, which may or 
may not be appropriate, and thus may unfairly weigh against the NN prediction. 

ROC curves and the c statistic. 

Receiver operating characteristic (ROC) curves are important tools for analyzing model 
performance when the outcome is dichotomous. A high neural network score may have excellent 
specificity but poor sensitivity for predicting clinical outcomes, whereas a low neural network 
score will be more sensitive but less specific. The ROC curve plots combinations of sensitivity 
and specificity for the entire range of model predictions, providing an overall view of performance 
(Hanley and McNeil, 1982) and the area under the ROC curve is a useful measure of prognostic 
accuracy. ROC curves have been used in several neural network studies (Ebell, 1993; Patil et al., 
1993; Buchman et al., 1994). 

In survival analysis the area under the ROC curve can be been used as a measure of prognostic 
accuracy at a specific time point - that is, after dichotomizing the output (Knaus et al., 1995). 
However a more powerful approach is to calculate the c statistic which can be considered a 
generalization of the area under the ROC curve. It is calculated by considering all possible 
pairings of patients and evaluating the concordance between model predictions and outcomes 
(Harreil et al., 1984). Model predictions are concordant if the patient predicted to live longer had 
a later event. However, if two patients both were censored then the concordance of model 
predictions cannot be determined. If only one patient is censored then concordance can still be 
determined, as long as the censored patient stayed in the study long enough. The c statistic 
derived from these comparisons has been used in evaluating neural networks for survival analysis 
(Faraggi and Simon, 1995). 

ll 



6. Learning methods (parameter estimation) 

These methods all require estimation of a large number of parameters in order to minimize the 
value of an error function. The most common approach is 'back-propagation' which is essentially 
a gradient descent approach. In practice, because of the large number of weights used in many 
NNs, convergence to an error minimum can be slow. Furthermore, this minimum may be a local 
rather than a global minimum. While we still feel that the back-propagation approach is extremely 
useful, the problems of long training time and local minima have led us to develop alternative 
training algorithms. 

Logicon projection. 

This is a patented algorithm developed by scientists at Logicon Inc, Los Angeles (Wilensky G and 
Manukian N, 1992). It requires that the user specify a 'prototype' individual to correspond with 
each hidden node. A method of N-dimensional projection is used to calculate initial weights into 
these hidden nodes so that that node fires maximally for the prototype individual. Starting the NN 
with such weights, instead of randomly assigned one, can reduce training time by one to two 
orders of magnitude. Even if no care is taken to select appropriate prototypes, and they are drawn 
at random from the training database, training times can be substantially reduced. 

Numerical methods 

Three numerical approaches for parameter estimation have been implemented: 

a. Gradient Method (back propagation) 
b. Newton Method 
c. Conjugate Gradients Method 

Genetic algorithms. 

A radically different approach to weight optimization may be used to try to avoid getting caught 
in a local minimum. With the so-called 'genetic algorithm' the weights are represented 
conceptually as genes on a chromosome. Instead of a single NN, a whole 'population' of networks 
with the same structure are created. The performance of each is evaluated, and the best (smallest 
error) are selected for 'mating', while the worst are removed (die). 

The weight-chromosome for each offspring is derived from the parent chromosomes through a 
process analogous to meiotic recombination with or without point mutations. Through many 
generations, with only the fittest being allowed to pass on their weight-chromosomes to new 
individuals, network performance improves. As a result of the discontinuous nature of the 
recombination process the weight matrix makes jumps in the parameter space that potentially avoid 
the trap of a local minimum and hopefully allows for exploration of the entire space for a global 
minimum (Narayanan and Lucas, 1993). 

12 



7. Evaluation using simulated data 

The most useful database for initial evaluation of network performance is one in which the 
relationship between the input and output variables in known. 

The simulation database included 1000 training records and 1000 testing records with four binary 
input covariates (A, B, C and D): 

Covariate Prob( value=1) Prob(value=0) 

A 0.05 0.95 

B 0.10 0.90 

C 0.25 0.75 

D 0.50 0.50 

Cases were assigned to a Low, Intermediate or High risk group, based on their covariate values: 

Covariate 'pattern' Group Distribution 

C = l or(B = l andD = l) Low risk exp(0.005) 

{all other combinations} Intermediate risk exp(0.01) 

A=l or, 
C = land(D = lorB = l) 

High risk exp(0.02) 

The censor time was drawn from a uniform(0,365) distribution. 

Cox regression was used to fit the four covariates (A - D), the NN prediction (P), a model with 
A,B,C,D and P, to determine whether P contained useful prognostic information not provided by 
the covariates (as main effects).  Note, these evaluations were based on the test group only. 

Table 2. Cox regression goodness-of-fit chi-squares 

Model :     x2 D.O.F p-value 

1 A,B,C,D 44.00 4 < 0.0001 

2 P 90.86 1 < 0.00014 

3 A,B,C,D, plus P 
    vs. Model 1 

106.54 
62.54 

5 
1 

< 0.0001 
< 0.0001 
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4 A,B,C,D and all two-way interactions 105.96 10 < 0.0001 

5 A,B,C,D and all two-way interactions, + P 
  vs. Model 4 

118.68 
12.72 

11 
1 

< 0.0001 
< 0.0001 

6 Risk groups (Low, Intermediate, High) 111.54 2 < 0.0001 

7 Risk groups, + P 
   vs. Model 6 

111.84 
0.30 

4 
1 

< 0.0001 
N.S. 

From these results we conclude that the NN prediction was able to substantially improve the Cox 
regression model fit when added to the four covariates, and even improved on a Cox model that 
included all two-way covariate interactions. As expected, it did not improve on a model in which 
the 'true' risk group assignments were represented. 

Since the 4 covariate variables can take only 16 possible combination of values, we examined the 
NN prediction for all input combinations. In addition we calculated the median of the fitted Cox 
distribution for models with A-D, and A-D, plus P, as shown in the table below. 

Group Cases Actual values Difference (Predicted - Actual) 

ABCD Risk P N Mean Median NNvs. 
mean 

NNvs. 
median 

Cox 
(A-D) 

Cox 
(P,A-D) 

0000 Int 0.32 290 99 68 -12 + 19 +6 + 1 

0001 Int 0.32 350 114 76 -24 + 14 -7 -3 

0010 Low 0.11 102 196 116 -73 +7 -41 +4 

0011 High 0.11 100 64 51 + 1 + 14 + 19 -2 

0100 Int 0.04 35 108 97 -19 -8 -8 -23 

0101 Low 0.04 49 183 132 -59 -8 -53 +5 

0110 High 0.01 11 36 14 + 16 +38 +76 +28 

0111 Int 0.01 10 114 67 -66 -19 + 13 -28 

1000 High 0.016 14 46 16 +2 +32 + 16 + 16 

1001 High 0.016 23 42 17 +3 +28 + 10 + 15 

1010 High 0.006 4 51 41 + 10 +20 -9 + 1 

1011 High 0.006 5 40 44 -9 -13 -17 -22 

1100 High 0.002 2 26 9 -20 -3 +29 +6 
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1101 High 0.002 4 62 31 0 +31 +3 + 16 

1110 High 0.001 1 29 29 -29 -29 + 10 -15 

im High 0.001 0 - - - - - - 

Weighted absolute difference (days) 23.8 14.1 14.6 4.3 

8. Breast cancer 

The data 

The original proposal included plans to analyze breast cancer from NSABP. This clinical trials 
group has several very large databases that would be ideal for NN modelling. At that time we had 
written assurances of collaboration from the NSABP. Subsequently, it became apparent that 
internal political difficulties, in the NSABP, was creating hold ups in the release of data to us. 
We visited their data center in Pittsburgh, to present an outline of our plans and methods, and had 
a return visit from a senior member of their statistical office. We had repeated assurances that 
they would be able to provide the data as promised. Unfortunately, the problems at NSABP got 
worse, with law suits being filed, and we were told that no data would be forthcoming until these 
matters were resolved. 

At this point we sought data from other sources. Not any data set would do - we needed one that 
included fairly detailed information on each case, and with a large number of patients. For some 
time it appeared that we would be able to have access to data from the Mayo Clinic. We had 
approval from the statistician and senior investigator responsible for the data, but despite repeated 
reminders the data were never forthcoming. 

We were more successful on our third try. We obtained data from Dr. Leslie Bernstein who has 
information on prognostic data from breast cancer patients treated at the Norris Cancer Hospital. 
The data set included 236 women with node negative breast cancer treated with surgery only. 

Covariates available included age, tumor size, nuclear grade, HER-2/neu amplification, histology, 
estrogen receptor status, and progesterone receptor status, although not all information was 
available for all patients. 

Cox regression 

In univariate Cox models, with disease free survival (DFS) as the endpoint, HER-2/neu 
amplification, tumor size, treatment center, and age all had significant associations with outcome. 
However in a stepwise multivariate Cox model, only HER-2/neu amplification and treatment 
center were accepted into the model: all other covariates were non-significant when controlling 
for the two selected covariates. Due to missing values, only 133 patients were available for the 
multivariate analysis. 
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Recursive Partitioning 

The recursive partitioning method selected HER-2/neu amplification as the strongest predictor, 
and further divided the non-amplified group according to treatment center. The amplified group 
was also split, based on nuclear grade (3 vs. 1 and 2). 

No. Obs. Exp. 

Partitioned Tree Cases Evnt Evnt x2/Pct 

:-5...SITE = IOWA/WISC 76 8 14.25 98.7% 

:-2...Her/2 = amplified 107 20 25.51 9. .60 

j :-4...SITE = USC 31 12 5.75 93.5% 

-1 133 31 6 .77 

j :-7...GRADE > 2.00 
I  i 

16 5 7.99 93.8% 

1 1 
:-3...Her/2 = not amplified 26 11 5.49 4 .35 

:-6...GRADE <= 2.00 10 6 3.01 80.0% 

The initial partition was based on NER-2/neu amplification, which had a logrank chi-square value 
of 6.77. The amplified group was further split, based on treating hospital: the USC patients did 
significantly worse (chi-square = 9.60), although this probably reflected differences in referral 
patterns rather than in efficacy of treatment. The non-amplified group was split into two groups 
based on tumor grade (greater than 2 vs. 2 or less). This partitioning thus resulted in four 
prognostic groups, with one year DFS for these groups being 80%, 94%, 94% and 99%. 

Neural Networks 

A two level feed-forward neural network (NN) was fitted, using all covariates and the Buckley- 
James method for handling censored observations. In initial evaluations the NN predictor was far 
more significant than any single covariate. However, with only 31 events the 133 cases with 
complete data, there was a risk that the NN had over-fitted the data. This is a common problem 
with NNs, since they typically involve a large number of estimated parameters. 

To avoid this bias a second 'bootstrap' analysis was conducted. The NN model was fitted 133 
times, each time omitting one patient's data, and the predicted survival time was then calculated 
for that patient only. Using this approach, the NN predictions were much less valuable, and in 
fact in a stepwise regression, the amplification and site covariates were chosen for inclusion and 
the NN predictor did not provide significant additional information. 

CONCLUSIONS 

It is difficult to draw firm conclusions about the relative value of the alternate methods because 
of the limited number of patients, and events, in the dataset. The original proposal for this project 
called for analysis of data on women treated by the NSABP, but due to internal problems within 

16 



that organization this collaboration was not possible. Application of these methods to other, large 
breast cancer databases will be needed to fully evaluate the potential of these alternative methods 
of analysis of prognostic factors. 
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